March 1979

CLOAD

MAGAZINE, inc.

March, eh? We started this magazine with
a March issue, last year. As my somewhat

volatile memory serves me, we got that issue | BOX 1267
out about the first of April. Yessir, we may ‘ GOLETéééié

fall short in a few areas here and there, but

we are consistant. _March 79 _J

Announcements:

There's only one announcement this month, and that is that yours truly firmly
planted his foot in his mouth last month. The cassette loader circuit modification
we announced was not (and therefore is not) the one Radio Shack is using to improve
level II loading. If you can't load level II tapes at all, talk to your local
Radio Shack dealer for the official mod. If you like to - or at least don't
terribly mind - hammering on your hardware, this is a good modification. As with
all user modifications, installation of this one will void any warranty now in
effect, and Radio Shack will not take too kindly to servicing it afterwards (and
reasonably so).

A general remark in passing: if it works, don't fix it! Don't descend on your
dealer to get the very latest circuitry unless you really need it.

This last week we fielded a request or two to explain the disassembler program
on our February issue. As usual, I'd like to approach the subject from far off, so
as to get a good head of steam built up by the time we hit it.

Machine code is that esoteric stuff that the 2-80 (and nobody else) finds
palatable. The code is in the form of bytes of data stored in memory, either
ROM~-type or RAM-type. Each instruction (usually one byte long) is a pattern which
tells the 2-80 chip to do something, like move the contents of one internal
register to ancther. How does one go about writing machine code? Let's look at
some history of the art of machine language programming. People started out
writing it armed with a pencil, paper, and a list of a computer's operations. (An
example of an operation: increment the contents of the internal register called the
"accumulator” by one). Each operation in this list had a code associated with it,
imaginatively called the "operation code", or "opcode". (Example: the opcode for
inecrementing the accumulator is 3C hex). Programming was the process of selecting
operations in some appropriate order, and writing down the sequence of opcodes.
The computer understood opcodes. [When the Z-80 runs across a 3C hex (00111100
binary, 60 decimal) in memory during an instruction fetch cycle, it will increment
the accumulator]. These pioneers then entered their program by throwing "front
panel” switches in a certain order, forcing associated memory cells to copy the
information on the switches. I can remember writing a program of about a thousand
steps, and entering it this way. This is called "insanity". The pioneers
eventually developed a better input device (punchcards - yecch!) and I eventually
scraped up enough cash to purchase a keyboard.

But I digress. Someone, back in the dim ages of computing, came up with a
program called an "assembler". What it did was take mnemonic code and transiate it
into machine code. (Mnemonic - from a Greek word '"mindful" - an example: INC A).
The programmer, who had by now memorized the various operations of the computer at
hand, now could submit a program in a more human form. Like a stack of punchcards
- yecch! However, they could now be read by humans as well as the computer. The
assembler program would read the card input and translate it into machine code.

' (2)
The computer would then either execute the program (equivalent to RUNning it) or
return to some other task, like putting it on punchcards in machine code form
(object code). Fantastic. That's what an assembler does. It translates Swahili
into Bengali. A disassembler, logically enough, translates Bengali back into
Swahili.

So? Why would anyone want to disassemble machine code? One obvious reason
would be to steal it. If one were to disassemble the machine code in the TRS-80's
ROMs one would have some powerful software utilities (the original mnemonic code is
securely locked up, I can assure you). That's not a good reason, however. In the
first place, theft is not a particularly moral thing. The BASIC interpreter and
all its copies and disassemblies are morally, ethically and legally the property of
Tandy Corporation. In the second place, it's more trouble than it's worth. Turns
out that a disassembler can never do a perfect job of disassembling machine code -
there are places where it just plain gets lost. Also, and most importantly, there
are these things called "comments". These are little marginal notes that the
programmer puts alongside the mnemonic list to explain what's happening and why.
They don't end up in the machine code - and therefore they can't be disassembled.
Without them, the code is hundreds of times more difficult to understand.

So much for lifting the code to sell it. One logical reason to disassemble
code is if the original is somehow lost (which happens a maximum of ONCE). Another
reason (the most useful one in this case) is to learn how a program was written,
much like LISTing a CLOAD magazine program. Those of you who commence looking
around in the ROMs will find that the code is extremely efficient. Another reason
is to debug code. All debuggers are disassemblers of a sort. Yet another reason
is interfacing code. When the TRS-80 was announced, one of the first ideas for its
use was for a local traffic engineer. He needed a device to collect data such as
time, fuel, and distance continuously and automatically while driving through a
city. This data was at that time all recorded by hand and punched onto cards
(yecch!) to submit to a large program running on a large computer. The TRS-80 was
the perfect solution, but level I BASIC didn't have the power we needed. This
meant that the software associated with the project had to be written in machine
code. The only prcoblem was that the keyboard, screen and cassette handler areas of
the BASIC interpreter program were not documented at that time (October 1977), and
we had to control these items with our program. We also had to figure out the form
of the level I floating-point numbers and find the location of the A(n) array in
memory. So - we disassembled their level I ROMs to find these parts, using a much
more powerful disassembler than the one we published. Two quick notes: We won't
publish the more powerful one, it wouldn't run on the TRS-80 anyway; We won't make
Radio Shack's code available, please don't ask.

Buzzword time - The mnemonic list we spoke of back there is generally called
"source code", or "the source" (sorry, Mr. Michener). The machine code that is
generated from the source is called the "object code" or "machine code", and the
program which does the translation is the assembler. The language that the
programmer writes in is called "assembly language" or "assembler", though it's
common for programmers to claim they are writing a machine code program, as opposed
to a BASIC or FORTRAN one. (It's just a sympathy play - sounds like more work).
True machine code programming, which is still done for some very, very short
programs, usually involves writing in assembly language and translating it with the
old quill pen and parchment. This is (logically) c¢alled "hand assembling". One
might ask if programs exist which translate a high level language into machine
code, and the answer is yes, they are called "compilers". The language FORTRAN is
usually treated in this manner.- The terms "source code" and "objéct code" apply
here just as in assembly. The language BASIC is usually implemented as an
"interpreter™. This is an arrangement where the source code (the BASIC program) is
translated and executed on a line-by-line basis. There is no object code. If the
program is to be distributed, it must be distributed as source code, and this is
one of the prime reasons that significant programs are exceptionally hard to find
in BASIC.

(3)

So much for last month's issue. There are two items for this month. The '
first is the turns counter values on the label. When all seemed to be going well
on our duplicator, our tape cassette supplier decided that life was too boring.
They slipped us a box or two of tape with a somewhat different thickness. The tape
is really quite good, it's Jjust that there is an error in the turns count on about
10 percent of the copies. On a level II TRS-80 with a CTR-L41 recorder, the error
starts out small and gets larger. On a level I TRS-80 with a CTR-41 recorder, the
error starts out large and doesn't get much better. On a computer which uses a
CTR-80, the turns count value has no meaning whatever. We are looking into both
aspects of this problem. For now, the logical thing to do is write down the turns
count of your recorder on the cassette label if there is much disparity.

Also on this issue, I'd like to describe "worm". This is a fill- in- the-
screen activity by a very production oriented worm. When it asks for a level,
that's level of difficulty. 1I'd recommend O until you get the hang of things. You
get to steer the worm, and the idea is to keep from crossing over your path. When
you find that you have "painted in" an area and can't move to another area, you
steer in that direction and activate the machine gun ("enter" in level I, space bar
in level 1I). I said the worm was production oriented. This will clear a channel
through your previous path. You run out of ammunition after five bursts. You run
out of room shortly thereafter, and receive a score for your surefooted
performance. When you get embarrassed by your extremely high score, increase your
level of diffieulty to even things up.

To start out this month's hardware soliloquy, I'd like to recap what we've
covered in the last few issues. We started this topic by discussing the concept of
what would be appropriate to control, given that there is a computer around to do
it with. At this time there is no specific application - everything we're covering
applies to 2ll implementations, so there is no need. We then addressed the subject
of safety and stressed it rather heavily - even though the majority of CLOAD
subscribers will probably never design or build a computer controller, it is
important to be aware of the concept of controlled failure. Next we published a
schematic diagram of a controller circuit, and described the concept of a schematic
diagram. The last thing we covered last month was a short description of how the
computer responds to an output instruction. In this issue I'd like to explain this
last topic in a bit more detail.

The first item of explanation is an introduction to the timing diagram - the
set of squiggly lines at the end of this article. The old saying of a picture
being worth a thousand words is as true in the field of electronics as anywhere
else. There is an instrument, called an oscilloscope, which has been designed to
draw a graph of voltage versus time. The 'scope looks a great deal like a
television set, and works on the same general principle, but the similarity ends
there - most conspicuously in the area of price (or, a picture is worth a thousand
bucks). The squiggly lines that this instrument draws are a clear view of what is
going on inside a circuit - so clear that most circuit descriptions draw what are
called "waveforms" - what an oscilloscope would draw if one were hooked up.

The set of lines on the last page are a set of waveforms. In this case they
are the waveforms of the signals present on the expansion port when an OUT
instruction is being executed. The particular OUT instruction could be either OUT
131,43 in level II BASIC or an assembly instruction such as OUT A,83H with 2B hex
in the accumulator. As we mentioned, the squiggly lines represent a graph of
voltage against time. The vertical position of each line represents the voltage
present at that point, with hi = logical 1 = high voltage = up (don't laugh - the
RS-232 standard defines up as being down). The horizontal direction of all lines
represents time, and it is read from left to right as time marches on. Correction
- as time zips by. Check the scale of time, remembering that one microsecond is
one millionth of a second, and that one nanosecond is approximately the time it
takes for light to travel from this page to your eyes.

(4)

A1l the lines are stacked one above the other so that one can see the time
relationship between them. The clock is the equivalent of the drummer on the
ancient, slave powered war galleys - it tells the ten thousand transistors inside
the 2-80 when to stroke. The lower eight address lines - A0 through AT - form the
port number just after the rising edge of the first clock pulse. Before that time,
they are used by another instruction and might be high or low (we signify this by
the crosshatching). The address decode circuitry that is hanging out there (in our
case, the TULS30 and THULSO4) recognizes this as the pattern that it should respond
to. Half a drumbeat later, the data to be transmitted appears on the data bus.
After the data has had time to become stable, the Z-80 puts out two signals that
the TRS-80 combines to form the OUT signal. The OUT signal is active low - it is
low if and only if there is data to be output. For the entire time that OUT is
active, both the address and data patterns stay put. This assures that our
external circuit remains selected and can grab the data anytime this line is low.
Ls a matter of interest, we actually grab the data during a relatively short
"window" (the boxes drawn in the center of T3). For the input function, all the
waveforms are similar, except that the IN line becomes active instead of the OUT
line, we put the data the computer is requesting on the data bus during the N
pulse time, and the Z-80 grabs the data sometime during the same "window".

The data byte now disappears into the deep, dark recesses of the 8255. The
way our circuit is set up, the (decimal) port addresses are as follows: 128 is port
"An 129 is port "B", 130 is port "C" and 131 is the control port - the pattern
that we put there controls the configuration of the other 3 ports. The pattern 43
decimal in this control port sets bit 5 in port "C". Next issue we'll do something

a bit more exciting.
/; C’j‘m/;

Ralﬁh McElroy ’ 5 .
. pPublisher -] - é// g
v cod v PR : - I o =y -
g2 L o EHHBEEHHEH ZRZRZRZ 2z AR
B < L;: r 7 [/f F - - 1O ?
ég A & ,»J i P % I e B < B = = LA - i B
) L -
o) - N
o]
o i
5 . RN S mlm
'U L] gy ’“"""": ;j"““ .
ng 0 | I L
KRN T (RS VNN R SN U AU S SO U) SN £ S
v O ! ,
s R4 = l :
L-l)
ORI } '
0w o J !
et e " I °
et = |
v e
g+ 2 ‘ !
o B N © i ‘
O 4
: SR
o
Qo » T | | .
IS
g‘% £ ‘_._.a .
o ot .
b i
> =1 -
g ZRSRZRZRZ Rz RS
0 43 ~— ‘ pd / / //" / / .// /’ °
Es B > - SRR e
5o RoRs R NN Rl SRZ RS NZE-RI NN
P EEPEEEE TO e T
54 4) r»//ﬂ ganrs -] i,; 1 1 D]
g U920 | dhEdeE R
RS “ ,21 Z i; Z - - 5 = L A ;
, L ' . g
Bka 43 o /1 o i/‘ n’/: E// o boe o »/ v /— - a/ L -~ b~
Nwow
st @ o H N M o N » I~ o ~ N ™ <« 0 W o~
e i
© o o~ 2 SR R CE U VR VR PR Vv ©c 6 © © © ®© © @©
0 o o w w T W T T T T | S i L TS S X
T e -~ < © T©T W © T T T » |z © & © © O & @
e &) L <L L< <L < < L 1O i a R A (] Q N o @

564 nanosecond,

14

~

~

state
N

one T -

icrosecond

Scale of time
oY one

	069.pdf
	070.pdf
	071.pdf
	072.pdf

